
Smart Contract Security Audit Checklist

Ensuring the security of your smart contract is critical before deploying it on the blockchain. This
checklist provides a step-by-step guide to auditing smart contracts, helping you identify and
mitigate potential vulnerabilities.

1. Code Review

● Manual Review: Thoroughly review the smart contract code line by line to identify any
logical errors, security loopholes, or unintended behaviors.

● Peer Review: Have the code reviewed by another developer to catch issues you might
have missed.

2. Testing for Common Vulnerabilities

● Reentrancy Attacks: Test for vulnerabilities that allow attackers to reenter the contract
before completing previous transactions.

● Integer Overflow/Underflow: Ensure your code handles all arithmetic operations
securely, using libraries like OpenZeppelin’s SafeMath if necessary.

● Unauthorized Access: Verify that all functions are correctly restricted to authorized
users or roles.

3. Unit Testing

● Comprehensive Test Coverage:Write unit tests for every function and scenario,
including edge cases, to ensure that the contract behaves as expected.

● Automated Testing: Use automated testing tools (e.g., Truffle, Hardhat) to run your unit
tests repeatedly, ensuring consistency across different conditions.

4. Input Validation

● Sanitize Inputs: Ensure all inputs are validated and sanitized to prevent injection
attacks or unexpected contract behaviors.

● Boundary Testing: Test inputs at their boundary values to ensure that the contract can
handle extreme or unexpected inputs.

5. Gas Optimization

● Optimize for Efficiency: Review the contract to identify and optimize any functions that
consume excessive gas, which could lead to failed transactions or high costs.

● Modularize Complex Functions: Break down complex functions into smaller, more
efficient units if they consume too much gas.



6. External Dependencies

● Audit Dependencies: If your contract relies on external data (e.g., oracles), ensure
these dependencies are secure and reliable.

● Decentralization of Oracles: Use decentralized oracles where possible to avoid single
points of failure.

7. Simulation of Contract Execution

● Test in Different Environments: Deploy the contract on a testnet (e.g., Ropsten,
Rinkeby) to simulate its execution in a live environment.

● Scenario Testing: Create and run simulations for various real-world scenarios, including
stress testing under high transaction volumes.

8. Security Best Practices

● Use Established Libraries: Leverage well-audited libraries and frameworks like
OpenZeppelin to avoid reinventing the wheel and introducing new vulnerabilities.

● Follow the Principle of Least Privilege: Ensure that functions and users only have
access to the resources necessary for their role, reducing the attack surface.

9. Third-Party Security Audit

● External Audit: Engage a reputable third-party security firm to conduct an independent
audit of your smart contract. They can provide an unbiased assessment and help identify
any overlooked vulnerabilities.

● Bug Bounty Program: Consider running a bug bounty program to incentivize the wider
community to find and report vulnerabilities.

10. Final Review and Documentation

● Document the Audit Process: Keep detailed records of all findings, changes, and
decisions made during the audit process.

● Finalize Codebase: Ensure that the final codebase is clean, with all known issues
resolved and no unused code or debugging artifacts remaining.


