
Gas Optimization Tips Checklist

1. Optimize Storage Usage

● Use Local Memory Variables: Transfer storage data to memory variables when
working within a function, then write back only if needed, as storage read/write is far
more expensive.

● Avoid Repeated Storage Access: Store values read from storage in a local variable if
accessed multiple times within the same function.

2. Optimize Data Types and Struct Packing

● Use Smaller Data Types:Where values allow, choose the smallest data types possible
(e.g., uint8, uint16). Compact data saves gas.

● Struct Packing: Arrange struct variables to fit within 32-byte slots. Solidity packs
multiple minor variables into a single storage slot, reducing cost.

● Avoid Strings and Dynamic Arrays in Storage: Use them sparingly, as they can
significantly increase gas costs; if suitable, try bytes32 or smaller fixed-size arrays.

3. Reduce Loop Costs with Efficient Logic

● Limit Loop Operations in Storage: Minimize storage read/write operations within
loops. Use local variables to hold interim results before writing to storage.

● Batch Processing: For large loops, split tasks across multiple transactions to avoid
hitting the block gas limit and excessive costs.

4. Use Constants and immutable Variables

● Define Constants: Declare values that won’t change as constant to save gas.
Constants are stored directly in bytecode, avoiding storage costs.

● Immutable Variables: Use immutable for variables initialized only once (like
constructor parameters), allowing changes without the extra storage overhead.

5. Structure Efficient Contract Architecture

● Modularize with Caution: Avoid deep nesting, which can increase gas costs for
function calls.

● Library Use: Offload reusable logic into libraries instead of duplicating code, reducing
contract size and deployment cost.

6. Minimize External and Cross-Contract Calls



● Consolidate External Calls: Minimize the number of calls to external contracts and
batch where possible. Each external call incurs additional gas overhead.

● Interface Optimization: Ensure external calls are optimized only to retrieve or send
required data, keeping functions streamlined.

7. Utilize view and pure Functions

● Design Read-Only Operations: Use view for reading from the blockchain without
changing state, costing zero gas when called externally.

● Pure for Calculations: Use pure functions for computations without state access,
reducing overall gas if logic is reused.

8. Optimize Event Logging and Parameterization

● Log Essential Data Only: Each additional parameter logged in an event increases gas
costs, so only log necessary data.

● Avoid Excessive Events: Use events to log significant actions but avoid frequently
changing or redundant information.

9. Implement Upgradable Patterns via Proxy Contracts

● Proxy Contract Use: Employ proxy patterns to avoid redeploying the entire contract for
upgrades, reducing costs over time.

● Separate Logic and Data: To update logic without modifying storage, keep the logic in
one contract and data in a separate proxy contract.

10. Eliminate Redundant Code and Streamline Operations

● Remove Unused Code: Eliminating unused variables, functions, or unnecessary
calculations saves gas and reduces complexity.

● Combine Conditionals and Avoid Unnecessary Checks: Streamline conditionals to
minimize steps, reducing the gas cost for each function call.


